use ReAct agent primitive
This commit is contained in:
parent
19e9e12235
commit
9858ffe289
209
main.py
209
main.py
@ -1,78 +1,130 @@
|
||||
import os
|
||||
from typing import Annotated
|
||||
from typing_extensions import TypedDict
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_community.tools.shell.tool import ShellTool
|
||||
from langgraph.graph import StateGraph, START, END
|
||||
from langgraph.graph.message import add_messages
|
||||
from langgraph.prebuilt import ToolNode, tools_condition
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
from langchain_core.messages import HumanMessage
|
||||
from log_analyzer import analyze_log_file
|
||||
|
||||
|
||||
class State(TypedDict):
|
||||
# Messages have the type "list". The `add_messages` function
|
||||
# in the annotation defines how this state key should be updated
|
||||
# (in this case, it appends messages to the list, rather than overwriting them)
|
||||
messages: Annotated[list, add_messages]
|
||||
|
||||
|
||||
def create_chatbot():
|
||||
"""Create and return a compiled chatbot graph with shell capabilities."""
|
||||
|
||||
# Initialize the StateGraph
|
||||
graph_builder = StateGraph(State)
|
||||
def create_agent():
|
||||
"""Create and return a ReAct agent with shell and log analysis capabilities."""
|
||||
|
||||
# Initialize the chat model (using OpenAI GPT-4)
|
||||
# Make sure you have set your OPENAI_API_KEY environment variable
|
||||
llm = init_chat_model("openai:gpt-4o-mini")
|
||||
|
||||
# Define the tools
|
||||
# Define the tools available to the agent
|
||||
shell_tool = ShellTool()
|
||||
tools = [shell_tool, analyze_log_file]
|
||||
|
||||
# Bind tools to the LLM so it knows how to use them
|
||||
llm_with_tools = llm.bind_tools(tools)
|
||||
# Create a ReAct agent with system prompt
|
||||
system_prompt = """You are a helpful assistant with access to shell commands and log analysis capabilities.
|
||||
|
||||
You can:
|
||||
1. Execute shell commands using the shell tool to interact with the system
|
||||
2. Analyze log files using the analyze_log_file tool to help with debugging and system administration tasks
|
||||
|
||||
The log analyzer can process files in the loghub directory with different analysis types:
|
||||
- "error_patterns": Find and categorize error messages
|
||||
- "frequency": Analyze frequency of different log patterns
|
||||
- "timeline": Show chronological patterns of events
|
||||
- "summary": Provide an overall summary of the log file
|
||||
|
||||
When helping users:
|
||||
- Be thorough in your analysis
|
||||
- Explain what you're doing and why
|
||||
- Use appropriate tools based on the user's request
|
||||
- If analyzing logs, suggest which analysis type might be most helpful
|
||||
- Always be cautious with shell commands and explain what they do
|
||||
|
||||
Available log files are in the loghub directory with subdirectories for different systems like:
|
||||
Android, Apache, BGL, Hadoop, HDFS, HealthApp, HPC, Linux, Mac, OpenSSH, OpenStack, Proxifier, Spark, Thunderbird, Windows, Zookeeper
|
||||
"""
|
||||
|
||||
def chatbot(state: State):
|
||||
"""Chatbot node function that processes messages."""
|
||||
# Print the messages being processed
|
||||
print("Current messages:", state["messages"])
|
||||
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
||||
|
||||
# Add the chatbot node to the graph
|
||||
graph_builder.add_node("chatbot", chatbot)
|
||||
|
||||
# Add the tool node to handle tool calls
|
||||
tool_node = ToolNode(tools=tools)
|
||||
graph_builder.add_node("tools", tool_node)
|
||||
|
||||
# Add conditional edges to route between chatbot and tools
|
||||
graph_builder.add_conditional_edges(
|
||||
"chatbot",
|
||||
tools_condition,
|
||||
# Create the ReAct agent
|
||||
agent = create_react_agent(
|
||||
llm,
|
||||
tools,
|
||||
prompt=system_prompt
|
||||
)
|
||||
|
||||
# Add edges
|
||||
graph_builder.add_edge(START, "chatbot")
|
||||
graph_builder.add_edge("tools", "chatbot")
|
||||
|
||||
# Compile the graph
|
||||
graph = graph_builder.compile()
|
||||
|
||||
return graph
|
||||
return agent
|
||||
|
||||
|
||||
def stream_graph_updates(graph, user_input: str, conversation_state: dict):
|
||||
"""Stream graph updates for a user input while maintaining conversation history."""
|
||||
# Add the new user message to the existing conversation
|
||||
conversation_state["messages"].append({"role": "user", "content": user_input})
|
||||
def stream_agent_updates(agent, user_input: str):
|
||||
"""Stream agent updates for a user input."""
|
||||
# Create a human message
|
||||
message = HumanMessage(content=user_input)
|
||||
|
||||
# Stream the graph with the full conversation history
|
||||
for event in graph.stream(conversation_state):
|
||||
for value in event.values():
|
||||
# Update conversation state with new messages
|
||||
conversation_state["messages"] = value["messages"]
|
||||
print("Assistant:", value["messages"][-1].content)
|
||||
print("\nAgent: ", end="", flush=True)
|
||||
|
||||
# Use the agent's stream method to get real-time updates
|
||||
final_response = ""
|
||||
tool_calls_made = False
|
||||
|
||||
for event in agent.stream({"messages": [message]}, stream_mode="updates"):
|
||||
for node_name, node_output in event.items():
|
||||
if node_name == "agent" and "messages" in node_output:
|
||||
last_message = node_output["messages"][-1]
|
||||
|
||||
# Check if this is a tool call
|
||||
if hasattr(last_message, 'tool_calls') and last_message.tool_calls:
|
||||
tool_calls_made = True
|
||||
for tool_call in last_message.tool_calls:
|
||||
print(f"\n🔧 Using tool: {tool_call['name']}")
|
||||
if tool_call.get('args'):
|
||||
print(f" Args: {tool_call['args']}")
|
||||
|
||||
# Check if this is the final response (no tool calls)
|
||||
elif hasattr(last_message, 'content') and last_message.content and not getattr(last_message, 'tool_calls', None):
|
||||
final_response = last_message.content
|
||||
|
||||
elif node_name == "tools" and "messages" in node_output:
|
||||
# Show tool results
|
||||
for msg in node_output["messages"]:
|
||||
if hasattr(msg, 'content'):
|
||||
print(f"\n📋 Tool result: {msg.content[:200]}{'...' if len(msg.content) > 200 else ''}")
|
||||
|
||||
# Print the final response
|
||||
if final_response:
|
||||
if tool_calls_made:
|
||||
print(f"\n\n{final_response}")
|
||||
else:
|
||||
print(final_response)
|
||||
else:
|
||||
print("No response generated.")
|
||||
|
||||
print() # Add newline
|
||||
|
||||
|
||||
def visualize_agent(agent):
|
||||
"""Display the agent's graph structure."""
|
||||
try:
|
||||
print("\n📊 Agent Graph Structure:")
|
||||
print("=" * 40)
|
||||
# Get the graph and display its structure
|
||||
graph = agent.get_graph()
|
||||
|
||||
# Print nodes
|
||||
print("Nodes:")
|
||||
for node_id in graph.nodes:
|
||||
print(f" - {node_id}")
|
||||
|
||||
# Print edges
|
||||
print("\nEdges:")
|
||||
for edge in graph.edges:
|
||||
print(f" - {edge}")
|
||||
|
||||
print("=" * 40)
|
||||
print("This agent follows the ReAct (Reasoning and Acting) pattern:")
|
||||
print("1. Receives user input")
|
||||
print("2. Reasons about what tools to use")
|
||||
print("3. Executes tools when needed")
|
||||
print("4. Provides final response")
|
||||
print("=" * 40)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Could not visualize agent: {e}")
|
||||
|
||||
|
||||
def main():
|
||||
@ -82,22 +134,31 @@ def main():
|
||||
print("You can set it by running: export OPENAI_API_KEY='your-api-key-here'")
|
||||
return
|
||||
|
||||
print("🤖 LangGraph Chatbot with Shell Access")
|
||||
print("🤖 LangGraph Log Analysis Agent")
|
||||
print("Type 'quit', 'exit', or 'q' to exit the chat.")
|
||||
print("⚠️ WARNING: This bot has shell access - use with caution!")
|
||||
print("-" * 50)
|
||||
print("Type 'help' or 'h' for help and examples.")
|
||||
print("Type 'graph' to see the agent structure.")
|
||||
print("⚠️ WARNING: This agent has shell access - use with caution!")
|
||||
print("📊 Available log analysis capabilities:")
|
||||
print(" - Analyze log files in the loghub directory")
|
||||
print(" - Execute shell commands for system administration")
|
||||
print(" - Help with debugging and troubleshooting")
|
||||
print("-" * 60)
|
||||
|
||||
# Create the chatbot
|
||||
# Create the agent
|
||||
try:
|
||||
graph = create_chatbot()
|
||||
print("✅ Chatbot with shell tool initialized successfully!")
|
||||
agent = create_agent()
|
||||
print("✅ Log Analysis Agent initialized successfully!")
|
||||
print("💡 Try asking: 'Analyze the Apache logs for error patterns'")
|
||||
print("💡 Or: 'List the available log files in the loghub directory'")
|
||||
|
||||
# Show agent structure
|
||||
visualize_agent(agent)
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error initializing chatbot: {e}")
|
||||
print(f"❌ Error initializing agent: {e}")
|
||||
return
|
||||
|
||||
# Initialize conversation state to maintain history
|
||||
conversation_state = {"messages": []}
|
||||
|
||||
# Start the chat loop
|
||||
while True:
|
||||
try:
|
||||
@ -105,9 +166,25 @@ def main():
|
||||
if user_input.lower() in ["quit", "exit", "q"]:
|
||||
print("👋 Goodbye!")
|
||||
break
|
||||
elif user_input.lower() in ["help", "h"]:
|
||||
print("\n🆘 Help:")
|
||||
print("Commands:")
|
||||
print(" - quit/exit/q: Exit the agent")
|
||||
print(" - help/h: Show this help")
|
||||
print(" - graph: Show agent structure")
|
||||
print("\nExample queries:")
|
||||
print(" - 'Analyze the Apache logs for error patterns'")
|
||||
print(" - 'Show me a summary of the HDFS logs'")
|
||||
print(" - 'List all available log files'")
|
||||
print(" - 'Find error patterns in Linux logs'")
|
||||
print(" - 'Check disk usage on the system'")
|
||||
continue
|
||||
elif user_input.lower() in ["graph", "structure"]:
|
||||
visualize_agent(agent)
|
||||
continue
|
||||
|
||||
if user_input.strip():
|
||||
stream_graph_updates(graph, user_input, conversation_state)
|
||||
stream_agent_updates(agent, user_input)
|
||||
else:
|
||||
print("Please enter a message.")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user