add react vs custom
This commit is contained in:
parent
9858ffe289
commit
8a0b8b2ba8
299
react_vs_custom.md
Normal file
299
react_vs_custom.md
Normal file
@ -0,0 +1,299 @@
|
||||
# ReAct Agent vs Custom StateGraph: Architectural Decision Guide
|
||||
|
||||
This document explores the two main approaches for building LangGraph agents: using the prebuilt `create_react_agent` vs implementing a custom `StateGraph`.
|
||||
|
||||
## TL;DR Recommendation
|
||||
|
||||
**Use `create_react_agent` for most use cases**. Only migrate to custom `StateGraph` when you hit specific limitations of the ReAct pattern.
|
||||
|
||||
## Option 1: `create_react_agent` (Current Implementation)
|
||||
|
||||
### What it is
|
||||
```python
|
||||
# Simple 5-line agent creation
|
||||
llm = init_chat_model("openai:gpt-4o-mini")
|
||||
tools = [shell_tool, analyze_log_file]
|
||||
agent = create_react_agent(llm, tools, prompt=system_prompt)
|
||||
```
|
||||
|
||||
### Under the Hood
|
||||
`create_react_agent` uses a predefined `StateGraph` with this structure:
|
||||
```
|
||||
START → agent → tools → agent → END
|
||||
↑________________↓
|
||||
```
|
||||
|
||||
- **`agent` node**: LLM reasoning (decides what to do)
|
||||
- **`tools` node**: Tool execution (acting)
|
||||
- **Conditional loop**: Continues until final response
|
||||
|
||||
### Advantages ✅
|
||||
|
||||
**Simplicity & Speed**
|
||||
- Minimal code to get started
|
||||
- Battle-tested ReAct pattern
|
||||
- Automatic reasoning/acting cycles
|
||||
|
||||
**Maintenance**
|
||||
- Automatic updates with LangGraph improvements
|
||||
- Less code to debug and maintain
|
||||
- Well-documented pattern
|
||||
|
||||
**Perfect for Standard Use Cases**
|
||||
- Tool-based interactions
|
||||
- Conversational interfaces
|
||||
- Analysis workflows
|
||||
- System administration tasks
|
||||
|
||||
### Limitations ⚠️
|
||||
|
||||
- Fixed ReAct pattern only
|
||||
- Limited state management
|
||||
- No custom routing logic
|
||||
- No parallel tool execution
|
||||
- No complex workflow orchestration
|
||||
|
||||
## Option 2: Custom StateGraph Implementation
|
||||
|
||||
### What it looks like
|
||||
```python
|
||||
from typing import TypedDict, Annotated, Literal
|
||||
from langgraph.graph import StateGraph, START, END
|
||||
from langgraph.graph.message import add_messages
|
||||
from langchain_core.messages import BaseMessage
|
||||
|
||||
class AgentState(TypedDict):
|
||||
messages: Annotated[list[BaseMessage], add_messages]
|
||||
current_task: str # "log_analysis", "shell_command", "general"
|
||||
log_context: dict # Remember previous analyses
|
||||
safety_mode: bool # Control dangerous commands
|
||||
|
||||
def classify_request(state: AgentState) -> AgentState:
|
||||
"""Classify user request type"""
|
||||
last_message = state["messages"][-1].content.lower()
|
||||
|
||||
if any(word in last_message for word in ["log", "analyze", "error", "pattern"]):
|
||||
state["current_task"] = "log_analysis"
|
||||
elif any(word in last_message for word in ["command", "shell", "run", "execute"]):
|
||||
state["current_task"] = "shell_command"
|
||||
else:
|
||||
state["current_task"] = "general"
|
||||
|
||||
return state
|
||||
|
||||
def route_request(state: AgentState) -> Literal["log_analyzer", "shell_executor", "general_chat"]:
|
||||
"""Route to appropriate node based on request type"""
|
||||
return {
|
||||
"log_analysis": "log_analyzer",
|
||||
"shell_command": "shell_executor",
|
||||
"general": "general_chat"
|
||||
}[state["current_task"]]
|
||||
|
||||
def analyze_logs_node(state: AgentState) -> AgentState:
|
||||
"""Specialized node for log analysis"""
|
||||
llm = init_chat_model("openai:gpt-4o-mini")
|
||||
|
||||
# Custom logic for log analysis
|
||||
# - Parallel file processing
|
||||
# - Context from previous analyses
|
||||
# - Specialized prompting
|
||||
|
||||
prompt = f"""You are a log analysis expert.
|
||||
Previous context: {state.get("log_context", {})}
|
||||
Use analyze_log_file tool for the requested analysis.
|
||||
"""
|
||||
|
||||
response = llm.invoke([HumanMessage(content=prompt)] + state["messages"][-3:])
|
||||
state["messages"].append(response)
|
||||
|
||||
# Update context for future analyses
|
||||
state["log_context"]["last_analysis"] = "completed"
|
||||
|
||||
return state
|
||||
|
||||
def execute_shell_node(state: AgentState) -> AgentState:
|
||||
"""Specialized node for shell commands with safety checks"""
|
||||
llm = init_chat_model("openai:gpt-4o-mini")
|
||||
|
||||
# Safety validation before execution
|
||||
dangerous_commands = ["rm -rf", "sudo rm", "format", "dd if="]
|
||||
last_message = state["messages"][-1].content.lower()
|
||||
|
||||
if any(cmd in last_message for cmd in dangerous_commands):
|
||||
state["messages"].append(
|
||||
AIMessage(content="⚠️ Potentially dangerous command detected. Please confirm.")
|
||||
)
|
||||
state["safety_mode"] = True
|
||||
return state
|
||||
|
||||
# Normal execution with ShellTool
|
||||
# Custom logic for command validation and execution
|
||||
|
||||
return state
|
||||
|
||||
def general_chat_node(state: AgentState) -> AgentState:
|
||||
"""Handle general conversation"""
|
||||
llm = init_chat_model("openai:gpt-4o-mini")
|
||||
|
||||
prompt = """You are a helpful system administration assistant.
|
||||
Provide guidance and suggestions for system debugging tasks.
|
||||
"""
|
||||
|
||||
response = llm.invoke([HumanMessage(content=prompt)] + state["messages"][-5:])
|
||||
state["messages"].append(response)
|
||||
|
||||
return state
|
||||
|
||||
def create_advanced_agent():
|
||||
"""Create custom agent with StateGraph"""
|
||||
|
||||
# Define workflow
|
||||
workflow = StateGraph(AgentState)
|
||||
|
||||
# Add nodes
|
||||
workflow.add_node("classifier", classify_request)
|
||||
workflow.add_node("log_analyzer", analyze_logs_node)
|
||||
workflow.add_node("shell_executor", execute_shell_node)
|
||||
workflow.add_node("general_chat", general_chat_node)
|
||||
|
||||
# Define edges
|
||||
workflow.add_edge(START, "classifier")
|
||||
workflow.add_conditional_edges(
|
||||
"classifier",
|
||||
route_request,
|
||||
{
|
||||
"log_analyzer": "log_analyzer",
|
||||
"shell_executor": "shell_executor",
|
||||
"general_chat": "general_chat"
|
||||
}
|
||||
)
|
||||
|
||||
# All terminal nodes lead to END
|
||||
workflow.add_edge("log_analyzer", END)
|
||||
workflow.add_edge("shell_executor", END)
|
||||
workflow.add_edge("general_chat", END)
|
||||
|
||||
return workflow.compile()
|
||||
```
|
||||
|
||||
### Advantages ✅
|
||||
|
||||
**Complete Control**
|
||||
- Custom business logic
|
||||
- Complex state management
|
||||
- Advanced routing and validation
|
||||
- Parallel processing capabilities
|
||||
|
||||
**Specialized Workflows**
|
||||
- Different handling per task type
|
||||
- Memory between interactions
|
||||
- Safety checks and validation
|
||||
- Custom error handling
|
||||
|
||||
**Performance Optimization**
|
||||
- Optimized tool selection
|
||||
- Reduced unnecessary LLM calls
|
||||
- Parallel execution where possible
|
||||
|
||||
### Disadvantages ❌
|
||||
|
||||
**Complexity**
|
||||
- 50+ lines vs 5 lines
|
||||
- More potential bugs
|
||||
- Custom maintenance required
|
||||
|
||||
**Development Time**
|
||||
- Slower initial development
|
||||
- More testing needed
|
||||
- Complex debugging
|
||||
|
||||
## Comparison Matrix
|
||||
|
||||
| Aspect | `create_react_agent` | Custom `StateGraph` |
|
||||
|--------|---------------------|-------------------|
|
||||
| **Lines of Code** | ~5 | ~50+ |
|
||||
| **Development Time** | Minutes | Hours/Days |
|
||||
| **Flexibility** | ReAct pattern only | Complete freedom |
|
||||
| **Maintenance** | Automatic | Manual |
|
||||
| **Performance** | Good, optimized | Depends on implementation |
|
||||
| **Debugging** | Limited visibility | Full control |
|
||||
| **State Management** | Basic messages | Rich custom state |
|
||||
| **Routing Logic** | Tool-based only | Custom conditional |
|
||||
| **Parallel Execution** | No | Yes |
|
||||
| **Safety Checks** | Tool-level only | Custom validation |
|
||||
| **Use Cases Coverage** | 80% | 100% |
|
||||
|
||||
## When to Use Each Approach
|
||||
|
||||
### Stick with `create_react_agent` when:
|
||||
|
||||
✅ **Tool-based interactions** (your current use case)
|
||||
✅ **Standard conversational AI**
|
||||
✅ **Rapid prototyping**
|
||||
✅ **Simple reasoning/acting cycles**
|
||||
✅ **Maintenance is a priority**
|
||||
✅ **Team has limited LangGraph experience**
|
||||
|
||||
### Migrate to Custom `StateGraph` when:
|
||||
|
||||
🔄 **Complex business logic** required
|
||||
🔄 **Multi-step workflows** with different paths
|
||||
🔄 **Advanced state management** needed
|
||||
🔄 **Parallel processing** requirements
|
||||
🔄 **Custom validation/safety** logic
|
||||
🔄 **Performance optimization** critical
|
||||
🔄 **Specialized routing** based on context
|
||||
|
||||
## Migration Strategy
|
||||
|
||||
If you decide to eventually migrate to custom StateGraph:
|
||||
|
||||
### Phase 1: Enhance Current Implementation
|
||||
```python
|
||||
# Add more sophisticated tools to your current setup
|
||||
def create_enhanced_react_agent():
|
||||
tools = [
|
||||
shell_tool,
|
||||
analyze_log_file,
|
||||
safety_validator_tool, # New: safety checks
|
||||
parallel_log_analyzer, # New: batch processing
|
||||
context_manager_tool # New: conversation context
|
||||
]
|
||||
return create_react_agent(llm, tools, enhanced_prompt)
|
||||
```
|
||||
|
||||
### Phase 2: Hybrid Approach
|
||||
```python
|
||||
# Use create_react_agent for some tasks, custom StateGraph for others
|
||||
def create_hybrid_agent():
|
||||
# Route complex workflows to custom graph
|
||||
# Keep simple interactions with ReAct agent
|
||||
pass
|
||||
```
|
||||
|
||||
### Phase 3: Full Custom Implementation
|
||||
- Implement complete StateGraph when requirements demand it
|
||||
|
||||
## Recommendation for Your Project
|
||||
|
||||
**Keep `create_react_agent` for now** because:
|
||||
|
||||
1. ✅ Your use case (log analysis + shell commands) fits perfectly
|
||||
2. ✅ Current implementation is clean and working
|
||||
3. ✅ Maintenance overhead is minimal
|
||||
4. ✅ Team can focus on improving tools rather than framework
|
||||
|
||||
**Consider custom StateGraph later** if you need:
|
||||
- Advanced workflow orchestration
|
||||
- Complex state management between analyses
|
||||
- Parallel processing of multiple log files
|
||||
- Sophisticated safety validation
|
||||
- Performance optimization for large-scale deployments
|
||||
|
||||
## Conclusion
|
||||
|
||||
Your current `create_react_agent` implementation is excellent for an MVP and likely covers 80% of system administration use cases. The ReAct pattern provides a solid foundation for tool-based AI interactions.
|
||||
|
||||
Only migrate to custom StateGraph when you have specific requirements that the ReAct pattern cannot handle efficiently. Focus on enhancing your tools (`log_analyzer.py`, additional custom tools) rather than changing the underlying agent framework.
|
||||
|
||||
**The best architecture is the one that solves your current problems without overengineering for hypothetical future needs.**
|
Loading…
x
Reference in New Issue
Block a user